
I. Appl. Maths Mechs, Vol. SI, No. 4, pp. 591~600,19X3 
Copyright 8 1994 Elsevier Science Ltd 

Printed in Great Britain. AU rights reserved 

0021~8928(93)EOOO3-F 
0021-8928/93 $24.00+0.00 

QUASISTATIC TREATMENT OF STABILITY FOR 
SOLUTIONS OF A CLASS OF MECHANICAL 
SYSTEMS WITH AN INFINITE NUMBER OF 

DEGREES OF FREEDOM? 

YE. V. SINITSYN 

Moscow 

(Received 9 December 1992) 

The stability of solutions of a certain class of singularly perturbed differential equations in Banach 

space, encountered in the theory of dynamics of deformed systems, are investigated. It is shown that in 

certain cases, when the equations of quasistatic motion of the system conform to criteria of asymptotic 

stability and instability in the first approximation, it suffices to investigate the stability of the solutions 

of these quasistatic equations. It is shown that the relative equilibrium of an inextensible viscoelastic 

ring, circumscribing a circular orbit in a plane orthogonal to the radius-vector of its centre of mass, is 

unstable. 

1. STATEMENT OF THE PROBLEM 

A “QUASISTATIC APPROACH”$ to studying the dynamics of large elastic systems in a gravitational 
field has been developed. The method may be described as follows. The systems are simulated 
by continuous elastic bodies having internal damping within the framework of linear 
viscoelasticity theory. It is assumed that the body is fairly rigid and that the decay time of the 
free elastic vibrations is much less than the characteristic time of the body’s motion as a whole. 
The field of displacements is sought as a series in the natural modes of free elastic vibrations of 
the body. On the basis of these assumptions, a small parameter is introduced and the system of 
equations for the dynamics of the system becomes a denumerable system of singularly 
perturbed equations 

y; =f,otj, 4n. 4nj, s = 1 I . . ., i (1.1) 

q; + 2E-1bo$7n + Ad;q" =Q,Cvs.si, 4;) (1.2) 

n=1,2,...; o<e41 

where y, are the phase coordinates, which describe the motion of a trihedron attached to the 
body, q,, are generalized (normal) coordinates describing the deformations of the body, and E 
is a small parameter characterizing the “high” rigidity of the body and the smallness of 
dissipative forces compared with elastic ones; the dot denotes differentiation with respect to 
time. The quantities E%, are the natural frequencies of elastic vibrations (b = 0) of the body. 
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Asymptotic forms of the solutions of system (l.l), (1.2) can be constructed by the boundary- 
layer method [l] similar to the method developed in [2, 31 for systems with elastic and 
dissipative elements. The terms included in the asymptotic expressions for the generalized 
coordinates q, correspond to quasistatic vibrations of the body and have the following form 
PI 

4n.=e’w;:ce,Cv,,o,O)-2ebQ;IO1,,0,0)) (1.3) 

where differentiation with respect to time is subject to the equations y: = f,(yj, 0, 0). After 
substituting (1.3) into the finite-dimensional system (1.1) and dropping terms O(E~), the system 
of equations describing the motion of a trihedron attached to the body is closed and easier to 
handle; these are the equations of quasistatic motion. 

Several workers [5-g]? have studied the stability of solutions of the equations of quasistatic 
motion. One as yet open question is the relationship between the stability/instability of their 
solutions and that of the solutions of the initial system (l.l), (1.2). 

We will show below that if the linearized equations of quasistatic motion are asymptotically 
stable or unstable, the same is true of the full non-linear system. 

2. THEOREMS ON STABILITY IN THE FIRST APPROXIMATION IN BANACH SPACE 

We will generalize certain well-known stability theorems [lo, 111. 
Let E be a Banach space, in which we consider an autonomous differential equation 

x’=& tF(x) (2.1) 

where A is a closed linear operator and F is a function satisfying the inequality 

Ilqx) ll<N II x II’+p, p> 0, N>O (2.2) 

in the domain II x IIS p. 
Let us consider the stability (in Lyapunov’s sense) of the trivial solution of Eq. (2.1), 

assuming that the solutions possess the properties of existence, uniqueness and extendibility 
over an infinite time interval. 

Let c(A) denote the spectrum and R (4, A) = (A - {)-’ the resolvent of A. Assume that: (1) A 
is a closed linear operator with domain dense in E; and (2) the semi-infinite interval 5 > p is a 
subset of the resolvent set of A and 

llR~tiv,A)U<B~-P.)-‘,I(-8, B=const 

Under these two conditions, A generates a quasibounded semigroup [12]. Denote the set of all 
operators satisfying conditions 1 and 2 by SZ(B, /3). 

Theorem 1. Let A EQ(B, p) for /I<0 and suppose condition (2.2) is satisfied. Then the 
trivial solution of Eq. (2.1) is uniformly asymptotically stable. 

Indeed, it follows from the assumptions of the theorem that the solutions of the first 
approximation equation 

jSee also: KLIMOV D. M., MARKEYEV A. P. and KHOLOSTOVA 0. V., On the dynamics of an elastoviscous ring 

in a gravitational field. Preprint No. 406, Inst. Problem Mekh., Akad. Nauk SSSR, Moscow, 1989; KARPOV I. I., 

KLIMOV D. M. and MARKEYEV A. P., Analytical computer derivation of the equations of motion of an elastic body 

in a gravitational field. Preprint No. 411, Inst. Problem Mekh., Akad. Nauk SSSR, Moscow, 1989. 
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x- *-Ax 

satisfy the condition I1 x IIs Bea’ 11x(O) II; the proof may now be carried out by standard 
arguments [lo, p. 511, 

Now consider the case in which j? > 0 and C(A) contains points in the right half-plane. 

Z’Freorem 2. If: (1) X(A) contains points in the right half-plane; and (2) A E sZ?(B, p) (#$ > 0) 
and condition (2.2) is satisfied, then the trivial solution of Eq. (2.1) is unstable. 

This generalizes a well-known result for bounded operators A [ll, p. 410, Theorem 2.31. 
Operators that satisfy the conditions of Theorem 2 possess the properties used to prove 
Theorem 2.3 of [ll]. 

We will also need the following theorem. 

Theorem 3 [12]. Let A E n(B, p) and let C be a bounded linear operator. Then A +C E In(B, 
p+BIICII). 

3. STABILITY ANALYSIS 

We will transform the system of equations (1.1) (1.2) by changing the variables [3] q, = 
g2qn*, qi =ep,, (the asterisk will be omitted henceforth) and putting 

y=oi,..*, Yk), P=@i.Pz,...), 4=(41,42,.**) 

C=diag.{w] , a:,... 1, B=2bC, 

System (l.l), (1.2) becomes 

p’= -E-‘BP -e-‘Cq te-lQ& ep, e’q), q’=e-‘p 
(3.1) 

Let us assume that system (3.1) has a stationary solution 

y=y*, p=o, q=qO (3.2) 

in whose neighbourhood the right-hand sides of system (3.1) are twice continuously 
differentiable. 

To investigate the stability of the solution (3.2), we consider the variational equations, 
retaining the same notation (y,p and q, respectively) for the variations of y,p and q 

y’ = Ty t eKp t c2Lq 

p’=(-&3tBl)pt(-~-‘C+eC~)q+~-1 My, q’=e-lp 
(3.3) 

where T is a finite-dimensional operator (a k by k matrix) describing the motion of an 
absolutely rigid body, with a configuration corresponding to q=q’, in the neighbourhood of 
(3.2). If the initial system (1.1) is Hamiltonian for q = 0, q’ =O, then either all the eigenvalues 
of T have zero real parts, or it has both eigenvalues with positive real parts and eigenvalues 
with negative real parts. The bounded operators K, L and M represent the relationships 
between the translational-rotational motion of the body and the deformation process; Bl and 
C, are bounded operators resulting from the linearization of system (3.1) in the neigh- 
bourhood of (3.2). 

System (3.3) may be treated as the first-approximation equation of Eq. (2.1) in the Banach 
space of sequence E 

E=EI @E2 bE3, YE&. pEE2, qEE3 
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We write (3.3) in matrix form 

x’=Ax, x=&p.qf 
T EK E2L 

A= e-‘M --e-‘B+B1 -E-‘C+EC~ , Z=diagl1,1....1 

I 0 E-II 0 
(3.4) 

The behaviour of the solutions in the neighbourhood of (3.2) depends on the properties of the 
operator A. To reduce (3.4) to a form more convenient for applying the theorems of Sec. 2, we 
change the variables n + x, = (y, -n, 4)’ 

p=q t ; &y, 
4 

I=0 4=-!+ IFo E+Iy (3.5) 

where the operators Ai : El + E,, I-, : E, -+ E3 (i = 0, , . . ,4) are chosen so that the terms in the 
equations for 77’ and 5’ that depend on y are of the order e4. 

Substituting (3.5) into the third equation of (3.3) and equating the coefficients of eiy (i= 
1 ,***, 3) to zero, we obtain expressions for the operators Ai 

&=O, &=FoT, &=IiT 

A3 = r2 T t F. KA1 + I’o Lr, 

b = r3~ t rom2 t rlfml + roml + r,mo 
(3 -6) 

Similarly, substituting (3.5) into the second equation of (3.3), we find that 

r. =c+hf, rl = - c-lBc-lm 
r2 =P(B~A~ tclro -m2 -AIT) 
r3 =C-‘(B1A2 tclrl -BA3 -A*T) 

I’4=c-1(B1A3 tC’,r, -B& - A3T- AIKA,) 

(3.7) 

The operators Ai, q (i = 0, . . . ,4) are uniquely defined by (3.6) and (3.7) and are bounded, 
since C’ and C’B are bounded. It can be shown that the transformation x-+ _xl is an iso- 
morphism, so that stability properties are preserved. 

The new variables satisfy the equations 

n’=(-E-‘BtBI t ; e’+‘AIK)qt(-c-rC+cCI + b Ei+z AIL) 6 t ~~0x1 
i=o f=O 

(3.8) 

where a, 8 and Y are bounded operators expressed in terms of Ii, Ai, K, L, E. 
The matrix form of the operator A1 in system (3.8) may be written in the form 

x; =Alxl, A, =A: +e4A1 1 

-B --C 
RI = 

A II 
I 0 
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where R, denotes terms of order at least 6’ and at most c3 on the right-hand sides of the 
second and third equations of system (3.8). 

We make yet another change of variables .x, -_) x,, aimed at giving the operator of the system 
the following form in the new variables xi = Azxz 

Changes of variable of this sort have been considered before for denumerable systems of 
differential equations [lo]. All of them preserve stability. 

Thus, the question of whether the solution (3.2) of system (3.1) is stable or not has been 
reduced to investigating the properties of the operator A, of (3.9), which is the sum of a closed 
operator Ai and a bounded operator l 4Al. We will treat ~“4 as a ~rt~bation. 

We will express Ai as the direct sum of two operators d_efined in mutually complementary 
subspaces, El and E2 63 lJ3 : a finite-dimensional operator T and a closed operator e-‘Rl + $. 
For the former we have T E 0(1, p) in El (/3 is the greatest real part of the eigenvalues of I”). 
The operator &RI characterizes the free damped oscillations of the damped system. It can be 
shown that 4’R, E Q(1, -1/(2~)). By Theorem 3, &Z?, + R2 E &2(1, -1 /(ZE)+ IIR, it) in E, ~EI E3 
(IIR, II= O(1)). Consequently, Ai E Syl, a), where 4 = max@, -l/(24+ IIR, II) = p. 

Let us assume first that all the eigenvalues of T have a real part of zero. 
If all the eigenvalues of T have negative real parts, then j3 ~0 and A,” satisfies the 

conditions of Theorem 1. 
The greatest real part of the eigenvalues must have the form -E’& (;3;h, >O), since the 

internal elastic forces in the expression for f correspond to 0(c2) terms and the dissipative 
terms to O(STZ”) terms. By Theorem 3, if 

E <A,,, II A: II-’ (3.10) 

the operator 4 also satisfies the conditions of Theorem 1, so the solution (3.2) is uniformly 
asymptotically stable. 

Let us assume now that f has eigenvalues with positive real parts. 
Let E3&, E3X& * . . , 2% (2: > O;_x d d; for i < j) denote the positive real parts of the roots of 

the characteristic equation of T. Let p= max,{(& -a;)} > 0. By the spectral resolution 
theorems [12] and Theorem 3, it can be shown that if 

the operator 4 satisfies the conditions of Theorem 2 and the unperturbed motion is unstable. 
In the case when T has eigenvalues with positive real parts, f has O(1) eigenvalues and the 

proof of instability is similar. 
Thus, for sufficiently small E (see (3.10) and (3.11)), the stability or instability of the solution 

(3.2) of system (3.1) may be determined by considering the stability of the finite-dimensional 
sys tern 

y’= ?j (3.12) 

provided the matrix F satisfies an asymptotic stability or instability criterion in the first 
approximation. 

As it turns out, Eqs (3.12) are simply the equations of quasistatic motion in the neighbour- 
hood of (3.2). 

We note that (3.12) may be obtained by substituting the expressions 
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p = eh1y + 2A2y 

Q = rou + ErlY 
(3.13) 

into the first equation of system (3.3). In view of our previous change of variables 4 = l 2q*, 
4’ =fp and formulae (3.6) and (3.7), we can rewrite (3.13) as 

q = 2c-1(My - dr’{My)‘), p = 4’ (3.14) 

where the differentiation with respect to time takes place along the trajectories of the equation 
y’ =Ty. Comparing (3.13) with (2.14) in [2], we conclude that (3.14) represents linearized 
asymptotic expansions of the generalized coordinates corresponding to quasistatic oscillations. 

We collect the above results in a theorem. 

Theorem 4. Assume that the linearized equations of quasistatic motion in the neighbour- 
hood of the unperturbed motion conform to a criterion of asymptotic stability (instability). 
Then for sufficiently small E (see (3.10) and (3.11)) the unperturbed motion is asymptotically 
stable (unstable). 

Remark. Instead of the exact particular solution (3.2) one frequently uses an approximate solution of 

Eqs (1.1) and (1.2) 

y=F, q~=~~=~f’w~‘~Qn~O*o,oo>. qn=o (3.15) 

As a rule, the connection between the solutions (3.15) and (3.2) is defined by the relations 

yo 7z jp, qR =&f +0(P) (3.16) 

The case (3.15), (3.16) is encountered, for example, in connection with the relative motion of a 
viscoelastic body in a central Newtonian force field. If f, and Q, are twice ~nt~uously differentiable and 

(3.15) is true, then 

T=T, +O(e’), L=L, +O(e’), K=K, +0(2) 
M=hfo +O(e’) 

af 
T, = - 

au 
W,O,O) 

aq 

K, =df CvO,O,O), MO = fz_ (YO, 0, oi 
ap ay 

Replacing the operators T, K, L and M in (3.12) by To, K,, L, and MO, respectively, does not affect 

the accuracy with which Eqs (3.11) and (3.13) were obtained. It can be shown that the equations obtained 
by substituting (1.3) into (1.1) and linearizing in the neighbourhood of the solution (3.14) are just Eq. 
(3.11) with the operator expressed in terms of To, K,, & and MO. 

The proof of Theorem 4 in this case involves some slight modifi~tions (the quantity 114 II). is 
changed). 

We also note that such conditions as L > 0 and & > 0 define subdomains of asymptotic stability or 

instability in the parameter domain. At parameter values for which &_ = O(e), & = O(6), conditions 

(3.10) and (3.11) may fail to hold and Theorem 4 will not apply. 
The case in which the equations of quasistatic motion represent some critical case of elasticity theory 

will not be discussed here. 
To sum up: with the exception of a few cases, as’indicated, we have rigorously proved the results of 

[S-9] (see also the papers cited in the second footnote). 
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4. THE STABILITY OFTHE RELATIVE EQUILIBRIUM OF A VISCOELASTIC 
INEXTENSIBLE RING IN A CIRCULAR ORBIT 

Consider a viscoelastic inextensible ring moving in a central Newtonian force field. We assume that the 
motion of the ring’s centre of mass is independent of the motion about the centre of mass and that the 

orbit of the centre of mass is circular (w, =Zkl’“, where T is the period of revolution of the centre of 
mass around the orbit). Some aspects of the motion of such a system have been examined before (cf. the 

fist paper cited in the second footnote). The necessary notation and equations of motion are as follows: 

0x,x,x, is a “mean” coordinate frame attached to the ring (0 is the centre of mass of the ring and x3 is its 
axis of symmetry); 0X,X,X, is an orbital frame. The X, axis points along the radius-vector of the centre 
of mass relative to the attractive centre and the X, and X, axes lie respectively along the binormal to the 
orbit and its transversal, in the direction of the centre of mass. Denote the unit vectors along the X,, X, 
and X, axes by 01, p and 7, respectively ( a,, fi, and yi denote their projections on the x, axes). 

The displacement u(r, t) of a point of the ring (with radius-vector r in the undeformed state) due to 

two-dimensional bending vibrations may be written as 

u(r, t)= I: (~nf tJG (~)+~~)U~)(~)) OD 00 
n=2 

where Up’, Uf) (n = 2, 3, . . .) is an orthonormal system of natural modes of vibration. 

The equations of motion of the trihedron 0x,x,x, may be written as 

K’ioxK=3yx37 

K =Jiii+K., K,= ; (4p&) -qpq~fje, (4.1) 
n=2 

3=(;3 ,W,,W,) ‘, e, = (O,O, l)T 

where 0, is the projection of the absolute angular velocity of the trihedron 0x,x,x, on the xi axis, 
multiplied by w;‘. The dot in (4.1) and elsewhere below stands for differentiation with respect to the 

dimensionless time variable r = OJ, and J is the inertia tensor of the ring for a point in the system 0x,x,x, 

J=J, +J, +.Ta, Jo =diag{A,A,Cj 

Ha 0 0 0 -H2 0 

0 -Ha 0 +2&j -Hz 0 0 

0 0 0 / u 0 0 0 

(4.2) 

;oo II 
1 

0 T 0 +2((1n 4n+2 

I 

“I (‘I +Qn 4n+2 (1) (If )X 

001 

-LnO 

+ 2(q$ )q&$?2 - qp4$$ I 0 Ln 

0 

0 

0 0 0 

3a 11 
,=--- J (n - l)(n+3) 

--, L"' 
2 10 4J(n’+l)((n+2)1+1) 

where u is the radius of the undeformed ring, m is its mass, A and C are its equatorial and axial moments 
of inertia, respectively. For a thin ring C = 2A. For generality, the ratio a = C/A will be assumed to be 
arbitrary from now on (0 6 a G 2). 



The equations describing the variation with time of the generalized coordinates &I, 4:’ are 

(4.3) 

in Eqs (4.3) for n = z, 3, we must formally equate qt&, qE\ to zero. The number b characterizes the 

dissipative properties of the material; rr%, = a&& where Sz, are the natural frequencies of two- 

dimensional bending vibrations of the ring, and E is a small parameter, introduced in the usual way [2,41. 

TO close system (4.1), (4.2), we add the kinematic Poisson equations 

a*=aXG;-y, 8’=BX3, +=rXCj+a (4.4) 

Equations (4.1), (4.2) and (4.4) have an exact particular solution 

Z;=(o,l,o)=, r=(O,O,lf O=(l,O,O)T 

c&)*=0, q$)*=o, q$)=O, n=2,3 ,_.. (4.5) 

This solution satisfies Eqs (4.1) and (4.4) for any values of qn . (‘) It corresponds to relative equilibrium 

of the ring in the orbital coordinate frame with its plane orthogonal to the radius-vector of its centre of 
mass relative to the attracting centre. 

The stationary values of the generalized coordinates qf) are determined by the relations 

(E-W: +H)qp+L,ql’)= _I#, 

L,k-~d:1-~f(E-aW:k+H)q!r)+L,k41k?l =o 

q:;F)-$ = 0, k = 3,4, _ . . 

We will write the solution of system (4.6) as a series 

Q= E2;rl + e’& * E‘q”j + . . , ‘;i = (q$ ), 4:’ ), . . IT 

& =(- Hawia, O,O, . JT, ~[=if-‘C,;3i-, 

‘95 L, 0 . . . 

(4.6) 

(4.7) 

Since c-‘cl is a compact operator, the series (4.7) converges absolutely if l 2 II?‘c?~ II< 1. Thus, 
condition (3.15) is satisfied and, by the remark in Sec. 3, we can use the approximate solution of system 

(4-6) 

411) = -&@H2, and the remaining q!,‘) = 0, i = 1, 2; n = 2, 3,4, . . . (4.8) 

We will now examine the stability of the particular solution (4.5), (4.7). The stability of the other two 
relative equilibria (when the plane of the ring lies in the orbital plane and when it is orthogonal to the 



Quasistatic treatment of stability for solutions of a class of mechanical systems 

velocity vector of the radius-vector of the centre of mass) has already been investigated 

paper cited in the second footnote). 

Put 
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(see the first 

(4.9) 

These relations take into account that the vectors cm, fi and y are orthonormal and that only three of the 
quantities a;, /3,, y* (i = 1, 2,3) are independent. 

~it~g the intermediate steps, we will merely give the linearized equations of quasistatic motion in 
the neighbourhood of the solution (4.5), (4.9) (for details of the procedure to be followed in deriving such 

equations see, e.g., IS]) 

(1 -e’r)y; =-e'A(1 -a)y, +((I -~)+2K(2a--ff)Y3 + 

+(-3(1-a)-36’~(2a-ljjy, -esA(l-ajYg 

(1 + Ea,)Y; = - r'A(l - a)y, + 13(1 - ej - ~‘Kf2~ - 1jjY, 

ay; =-113esA(1 --a)~‘, +e3A(1 -e)Ys 

,; =-ys, v; =YI +Y6, Y; =-Y3 -Y5 

K = 2e/(Aw: 1, A = 12 bw, K 

(4.10) 

The roots of the characteristic equation of system (4.10) are 

A, = 0(e4 j, h, =E’ 
4A(1 - aj 

+ O(e’j 
30(31y - 4) 

4A(l - 0~)’ 
h ?,6 =E 

f f i (JXZZ+ O(8)) 
(r(30 - 4) 

When 0 <a < 1 one of the roots 4 or ;iz is positive; if 1 <a < 413 we have & > 0, and if 413 c a < 2 the 

real parts of & and & are positive. Consequently, by Theorem 4, for any values of GC in the interval from 
zero to two (with the exception of small neighbourhoods of the points a = 1 and a = 413) the relative 

equilibrium of the ring in the orbital coordinate frame, with its plane orthogonal to the radius-vector of 
the centre of mass, is unstable. 

The research reported here was supported by the Russian Fund for Fundamental Research 
(93-013-16257). 
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